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Abstract

The binary flutter mechanism of a two-dimensional linear airfoil (typical section) in turbulent flow is investigated

numerically. The airfoil is modelled as a flexibly mounted rigid flat plate, with degrees of freedom in pitch and heave.

The unsteady aerodynamics is represented using both Wagner’s function, accounting for arbitrary motion and

longitudinal turbulence, and k .ussner’s function, accounting for vertical turbulence. The flutter stability/instability

boundary is examined according to the concept of sample stability, as given by the largest Lyapunov exponent. Results

show that, for all airfoil and turbulence parameters considered, the longitudinal component of turbulence lowers the

flutter speed. This decrease in flutter speed is determined essentially by the small and very small frequencies of the

turbulence excitation, specifically due to principal and secondary combination difference type parametric resonances.

Furthermore, there is strong evidence that the random excitation, specifically the longitudinal component, modifies the

modal characteristics of the system, and in turn the coalescence of the two aeroelastic modal frequencies. In this sense,

the nature of the shift of the flutter point is typical of the deterministic classical binary flutter problem.

Crown Copyright r 2003 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In previous papers (Poirel and Price, 1997, 2001) we explored different aspects of the dynamics of a structurally

nonlinear two-dimensional airfoil (the typical section) in turbulent flow. In particular, some characteristics of the

supercritical Hopf bifurcation were investigated and interpreted from the point of view of random bifurcation theory.

Briefly, random bifurcation theory defines two basic types of bifurcation: the D- (for Dynamical) and P- (for

Phenomenological) bifurcations. The D-bifurcation corresponds to a loss of stability as expressed by a change of sign of

the largest Lyapunov exponent; hence, it is associated with a critical slow down of the dynamics in the same manner as

for the deterministic dynamics. Note, that the Lyapunov exponents are a generalization of the real part of the

eigenvalues, defined for a fixed point, to any arbitrary solution. On the other hand, the P-bifurcation defines a

qualitative change in the dynamical behaviour as represented by the probability density function of the response. For

the special case of the (trivial) deterministic problem, the D- and P-bifurcation points coincide at one airspeed; in other

words, the largest Lyapunov exponent vanishes at the same airspeed as the limit cycle oscillation appears.

It was found that under pure longitudinal excitation (which acts as a random parametric excitation) the bifurcation

becomes a two-step bifurcation, characterized by: first, a D-bifurcation, followed by a P-bifurcation. The D-bifurcation

was associated with the flutter speed, and the P-bifurcation with the onset of the limit cycle oscillation. When vertical
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turbulence is added (it takes the form of a random external forcing), the D-bifurcation disappears and only the P-

bifurcation remains.

We also reported preliminary results concerning the stability and response behaviour of the turbulent excited airfoil

in its linear form. We found that for the few cases studied the stability of the linear airfoil, strictly speaking its fixed

point, is lost via a D-bifurcation, which, due to longitudinal turbulence, occurs at a lower airspeed compared with the

deterministic flutter speed. It was also shown (Poirel, 2001) that, contrary to the nonlinear airfoil, vertical turbulence

does not affect the D-bifurcation of the linear airfoil; in fact, for the general linear problem, the external forcing does

not contribute to or affect the system stability. Furthermore, it was shown that longitudinal turbulence caused the

airfoil to respond with more intensity to vertical excitation. This occurred not only in the close vicinity of the flutter
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Nomenclature

ah nondimensional distance between elastic axis and midchord

b semichord

h; y airfoil motion in heave and pitch directions

IEA airfoil moment of inertia about elastic axis

Kh;Ky heave and pitch stiffness coefficients

k reduced frequency, ob=Um:
kf deterministic flutter reduced frequency

Lnd nondimensional scale of turbulence, L=b

LðtÞ;MEA lift force and aerodynamic moment about the elastic axis

m airfoil mass per unit length

ry nondimensional radius of gyration, IEA=mb2

U total freestream velocity, Um þ uT

Und nondimensional speed, U=boy

Um mean freestream velocity

Um;nd nondimensional mean freestream velocity

Uf ;nd nondimensional deterministic flutter speed

uT ;wT longitudinal and vertical turbulence velocities

uT ;nd ;wT ;nd nondimensional turbulence velocities

%u; %w normalized turbulence velocities, uT ;nd=Um;nd ; wT ;nd=Um;nd

t; s time

w3=4 downwash at three-quarter chord

xy nondimensional distance between elastic axis and centre of mass

z1; z01 nondimensional aerodynamic lag states due to Wagner’s function

z2; z02 nondimensional aerodynamic lag states due to K .ussner’s function

a angle of attack

m nondimensional airfoil mass, m=rpb2

x nondimensional heave motion, h=b

Lmax largest Lyapunov exponent

lmax nondimensional largest Lyapunov exponent, Lmaxb=Um

r density of air

s2
T turbulence velocity variance

s2
T ;nd nondimensional turbulence velocity variance, s2

T=ðboyÞ
2

t nondimensional time, Umt=b

fLT ; fVT longitudinal and vertical turbulence power spectral densities

FðtÞ Wagner’s function

CðtÞ K .ussner’s function

o radial frequency

oh; oy radial frequencies in heave and pitch

%o frequency ratio, oh=oy

( � ) derivative with respect to dimensional time

( )0 derivative with respect to nondimensional time, d=dt
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point, but at all airspeeds. We therefore concluded that longitudinal turbulence decreases the stability of the airfoil on

two accounts. Not only does it reduce the flutter speed, but it also diminishes the damping for airspeeds below flutter.

This was corroborated by the behaviour of the largest Lyapunov exponent, which is closer (less negative) to the neutral

axis at all (pre-flutter) airspeeds.

In this paper we restrict the analysis to the linear problem, and examine more closely the binary flutter characteristics

of the turbulent excited airfoil. We confirm and generalize our previous preliminary results by presenting a systematic

analysis for different combinations of turbulence and airfoil parameters. We also shed some light on other aspects of the

random coalescence flutter and analyse the problem in terms of parametric resonance. Furthermore, a brief overview of

random flutter is presented with the objective of putting in perspective specific issues related to this problem. In short, a

primary objective is to present a more complete picture, and gain a more fundamental understanding, of the effect of

longitudinal turbulence on the loss of stability of the fixed point due to coalescence flutter.

Contrary to the deterministic problem, where the observation of a signal often leaves (relatively) very little room for

interpretation, the determination of stochastic stability is, in general, not a trivial affair. It is therefore relevant to briefly

introduce some fundamental aspects of stochastic stability before discussing random flutter. Due to the innate random

nature of a stochastic system (or random since, according to Arnold (1998), the qualifying term ‘‘stochastic’’ applies to

problems where the excitation is white, whereas ‘‘random’’ refers to coloured noise excited problems), the most viable

approaches are obviously probabilistic and statistical. Hence, in an effort to create a manageable approach to the

problem, the different concepts of stochastic stability have been defined along these lines; the two main, fundamental,

concepts are sample stability and moment stability.

Sample stability (also termed almost sure stability, almost certain stability, or stability with probability one) describes

the stability in terms of probability, and ensures the stability of all sample functions except for those whose probability

of occurrence is negligible. For instance, Mitchell and Kozin (1974) express almost sure asymptotic sample stability of

the trivial solution, x ¼ 0; as

P½ lim
t-N

jjxðtÞjj-0	 ¼ 1: ð1Þ

Consider the linear stochastic system x ¼ AðxðtÞÞx in Rd, where x(t) is a stationary ergodic random process given by the

solution of

dx ¼ ax dt þ b dW ð2Þ

and W is the Weiner process on the probability space {O; t; P}. The Lyapunov exponent of a solution xðt; x0Þ is defined

by

lðx0Þ ¼ lim
t-N

1

t
logjjxðt; x0Þjj; xð0Þ ¼ x0: ð3Þ

It represents the average exponential growth rate of the solution xðt; x0Þ: In general, the Lyapunov exponent is a

random variable which, according to Oseledec’s multiplicative ergodic theorem, and under certain assumptions such as

ergodicity, takes only a finite number of nonrandom values lpolp
1oyol1 ¼ lmax; ppd: Furthermore, under

assumptions related to differential operators it can be shown that

lmax ¼ lðx0Þ ¼ lim
t-N

1

t
logjjxðt; x0Þjj; with probability 1; ð4Þ

where lmax is nonrandom and independent of x0: The reader is referred to Arnold et al. (1986) for details of the

theorems and conditions. Sample stability is therefore controlled by the value of the largest Lyapunov exponent, lmax;
such that a change in sign of lmax (from negative to positive) corresponds to a loss of stability, almost surely, of the fixed

point (Baxendale, 1991; Arnold et al., 1986). As introduced earlier, a vanishing lmax is also indicative of a D-bifurcation

(Arnold, 1995).

The other main notion used to describe stochastic stability is in terms of a statistical functional of samples. Here, we

introduce the older concept of moment stability. According to Mitchell and Kozin (1974), the trivial solution is

considered asymptotically stable in the nth-moment if the following condition is met:

lim
t-N

E½jjxðtÞjjn	-0; ð5Þ

where ||xðtÞ|| is the Euclidian norm of a point on the d-dimensional trajectory, and E[ ] is the expectation or the

ensemble average. Although n can take different values, it is common to concentrate on the traditional second moment

(n ¼ 2), thus mean-square stability, which provides a better physical insight than that obtained with other values of n:
In general, moment stability does not imply sample stability and vice versa. However, it has been shown that, for

linear stochastic differential equations, conditions ensuring mean-square stability are more stringent than those
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required for sample stability. In other words, mean-square stability implies sample stability. Conversely, a stochastic

system which is not almost surely stable (sample stability) is also unstable in the mean-square sense; for example, see

Mitchell and Kozin (1974) or Lin (1996). Note that in this paper the random flutter point is identified according to a

change in sign of lmax: We are therefore concerned with sample stability, and by extension with the D-bifurcation.

2. Overview of random flutter in aeroelasticity

In order to have a better understanding of the mechanisms that dictate the effect of longitudinal turbulence

on the instability it is relevant to first underline the specific nature of coalescence flutter in contrast to other flutter

instabilities. This discussion is also motivated by the observation that in the relatively recent literature concerning

random flutter, either in aeroelasticity or in fluidelasticity (fluid–structure interaction), often the type of flutter being

examined is neither stated clearly nor can it be deduced easily. Before going further, it is essential to recognize that the

type of problem being discussed in this paper is time-varying (or parametrically excited), i.e. the parameters are

fluctuating (randomly) in time, as opposed to a time-invariant system with uncertain (nondeterministic) parameters.

Accordingly, the term ‘‘random’’ flutter does not refer to the flutter speed being a random variable, but to the random

nature of the excitation. In fact, the flutter speed is considered to be a deterministic variable for the problem discussed in

this paper.

From a mathematical point of view, flutter instabilities are dynamical instabilities which can be described by a

pair of complex conjugate eigenvalues whose real part vanishes at the flutter speed. However, the physical origin of each

type of flutter instability can be significantly different. From a fundamental point of view it is generally considered that

there are two broad classes of flutter. One is sometimes referred to as fluid-stiffness-controlled instability, which

requires at least two-degrees-of-freedom or modes of vibration to exist. This is the case treated here. It is characterized

by a near (but not exact) coalescence of two aeroelastic modal frequencies. The ratio of the two uncoupled natural

frequencies, %o=oh=oy; has a strong influence on the airspeed at which this instability occurs. It is therefore highly

sensitive to the system stiffness properties, but much less sensitive to the system damping. Unsteady aerodynamics is not

required to qualitatively represent this instability; it can be predicted using quasi-steady aerodynamics. This type of

flutter is also termed coalescence, binary, two-degree-of-freedom, two-mode or classical flutter. It is not restricted to

airfoils, and can be found on other structures; such as: arrays of flexible tube bundles, panels (hence panel flutter) or

bridges.

The other broad class of flutter is a fluid-damping-controlled instability. One sub-class is called single-degree-of-

freedom flutter. In its simplest form it involves one-degree-of-freedom only, which for an airfoil must be in torsion.

Furthermore, in order to predict negative aerodynamic damping the analysis must properly model the unsteady

aerodynamics. This single-degree-of-freedom flutter is, however, a rare occurrence. More common is stall-flutter, which

can occur either in bending or in torsion, although the physical mechanism is slightly different in each case. As the name

suggests, for stall-flutter separated flow must exist in both cases. The torsional motion instability requires dynamic stall

to have occurred, hence accurate modelling of both unsteady aerodynamics and separated flow is required. The bending

motion can become unstable simply due to a negative lift curve slope associated with static stall. One additional

fundamental difference between stall and coalescence flutter is that, due to its inherent nonlinear nature, stall-flutter

does not only refer to the loss of stability of an equilibrium point, but also to the post-instability dynamics in the form

of an LCO. In contrast, coalescence flutter describes purely the loss of stability.

An important class of aeroelastic problems where random (and stochastic) flutter has been studied previously

concerns bridges in turbulent wind (Bucher and Lin, 1988a, b, 1989; Lin and Li, 1993; Li and Lin, 1995; Lin, 1996). The

vast majority of their work concentrated on the analytical treatment of single-degree-of-freedom type instabilities,

mainly negative-damping flutter. They found, on the basis of a single-degree-of-freedom model, that longitudinal

turbulence is generally destabilizing, whereas it could have a stabilizing effect if coupling with additional modes of

vibration was accounted for. Li and Lin (1995) and Lin (1996) also highlighted the significance of the excitation at

frequencies corresponding to 2o1; twice the flutter frequency (i.e. principal parametric resonance), and |o12o2|(i.e.

parametric combination, difference type, resonance) for the two-degree-of-freedom case.

We have found only one clear instance where the coalescence (binary or two-mode) flutter of a bridge is treated

(Bucher and Lin, 1988b), albeit very superficially. Their analysis showed a destabilizing effect, in the mean-square sense,

of longitudinal turbulence on this type of flutter. Furthermore, the degree of destabilization appears, essentially, to be

proportional to the excitation spectral density.

Another important example of random flutter in aeroelasticity is that of helicopter rotor blades in turbulent flow.

This has been studied by Lin et al. (1979), Fujimori et al. (1979), Prussing and Lin (1982, 1983). Of particular interest is

the torsion-flap problem, which is similar to the binary flutter treated in this paper (Done, 1996), except for the added
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periodic parametric excitation originating from forward flight (Fujimori et al., 1979). Considering the excitation as

white noise, modelling the aerodynamics as quasi-steady, and neglecting the quadratic noise component, u2
T ; it was

found by Fujimori et al. (1979) that in-plane (longitudinal) turbulence had a destabilizing effect, in the mean-square

sense, for this type of flutter.

Our discussion also adds to the work of Ibrahim et al. (1990, 1991) on stochastic panel (two-mode) flutter.

Using a structural model with two or three modes, assuming quasi-steady supersonic aerodynamics, and

considering a parametric white noise excitation originating from structural in-plane loads and acting on the

stiffness terms only, they found that parametric random excitation was always destabilizing in the mean-square

sense.

The more general fluid–structure interaction (fluidelasticity) scenario also lends itself to the study of the effect of

upstream turbulence on flexible tubes in cross-flow, a topic which has and still receives a lot of attention, for example

Romberg and Popp (1998). This is an extremely vast domain of research and no attempt will be made to provide even a

modest overview of the problem.

3. Problem modelling

The typical section, also known as the two-dimensional airfoil, is used for this analysis. This is shown schematically

in Fig. 1. The airfoil is modelled as a rigid flat plate, with degrees of freedom in pitch and heave. Structural

flexibility is provided by torsional and translational springs. Structural damping is neglected. The model is linear and

represented by the following two coupled differential equations (Fung, 1955), heave being defined positive down and

pitch nose up:

IEA
.yþ mxyb .h þ Kyy ¼ MEAðtÞ; ð6aÞ

mxyb.yþ m .h þ Khh ¼ 
LðtÞ: ð6bÞ

In addition to the parameters and variables shown in Fig. 1, IEA represents the mass moment of inertia about the elastic

axis, and m is the airfoil mass. Ky and Kh are the torsional and translational linear spring coefficients, respectively. The

uncoupled structural natural frequencies in heave and pitch, respectively, are oh ¼ ðKh=mÞ1=2 and oy ¼ ðKy=IEAÞ
1=2:

Coupling between the two degrees-of-freedom arises from the inertia terms when the elastic axis and centre of mass are

not coincident (xya0), and otherwise from the aerodynamics. On the right-hand side of the pitch and heave equations

are the aerodynamic moment about the elastic axis and lift force, respectively. Also shown in Fig. 1 are the mean

airspeed and the two turbulence velocities, longitudinal and vertical.

Details of the aerodynamic modelling and representations of the turbulence are given in the following sections.
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3.1. Turbulence model

The random excitation is modelled using the Dryden continuous turbulence model (Hoblit, 1988; Houbolt et al.,

1964). Some important simplifying assumptions employed in this model are: a Gaussian distribution of fluctuating

velocities; chordwise (only used for the longitudinal component) and vertical uniformity; isotropy and statistical

stationarity. Furthermore, it is assumed that temporal gradients of the turbulent velocity fluctuations are negligibly

small compared to the gradients along the flight path (in x; %x) of the airfoil. This is known as Taylor’s (and von

K!arm!an’s) hypothesis, or the frozen turbulence assumption. It is formulated as uT ¼ uT ð %x; %y; %z; tÞ ¼ uT ð %x; %y; %zÞ ¼
uT ðx 
 Umt; y; zÞ; where ð %x; %y; %zÞ and (x; y; z) form atmospheric and body fixed coordinate systems, respectively. It is then

possible to convert spatial variables into time, such that the turbulent velocities are considered statistically stationary

with respect to time in the body fixed coordinate system. Since this work is restricted to the two-dimensional airfoil,

only the longitudinal and vertical components of turbulence are relevant, respectively, uT ¼ uT ðtÞ and wT ¼ wT ðtÞ: As a

result of the longitudinal excitation, the airspeed is time-varying.

The basic representation of the Dryden model is given in the frequency domain, as shown in Eq. (7a) and (b) for the

longitudinal and vertical turbulent velocity power spectral densities (PSDs), respectively:

fuuðoÞ � fLT ðoÞ ¼ s2
T

2L

pUm

� �
1

1 þ ½Lo=Um	2
; ð7aÞ

fwwðoÞ � fVT ðoÞ ¼ s2
T

L

pUm

� �
1 þ 3½Lo=Um	2

½1 þ ½Lo=Um	2	2
: ð7bÞ

These spectra are presented in nondimensional form in Fig. 2 for a scale of turbulence and variance, Lnd ¼ 50:0 and

s2
T ;nd ¼ 10; respectively. The scale of turbulence, L; divided by the mean free-stream velocity, Um; is equal to the

correlation time of the longitudinal random excitation (in nondimensional form they are equal, Lnd ¼ tcor). The scale of

turbulence can be interpreted physically as the ‘‘average’’ distance travelled by the airfoil during which the turbulence

velocities can be considered as uniform. Hence, the larger the scale of turbulence, the farther, in average, the airfoil

travels before experiencing a change in turbulence velocities.

In order to practically implement the Dryden excitation as an input to the aeroelastic system, specifically into the lift

force and aerodynamic moment, the excitation must be transformed into the time domain. The procedure consists of

developing a transfer function in the Laplace domain that relates unit (i.e. fWN ¼ 1) Gaussian white noise as input and

the turbulence velocity as output. The square of the modulus of the transfer function, expressed in the frequency

domain, must match the turbulence PSD given in Eq. (7). In essence, Eq. (7) is a filter between white noise and the

proper excitation. Taking the inverse Laplace transform of the transfer functions gives the following time domain
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Fig. 2. Closed-form solution of the nondimensional PSD of Dryden turbulence; Lnd ¼ 50:0 and s2
T ;nd=1.0.
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representation:

duT þ
Um

L
uTdt ¼ sT

2Um

pL

� �1=2

dW1; ð8aÞ

dwT þ
2Um

L
wT dt þ

U2
m

L2

Z t

0

wT ds

� �
dt ¼ sT

U3
m

pL3

� �1=2 Z t

0

dW2

� �
dt þ sT

3Um

pL

� �1=2

dW2: ð8bÞ

As shown in Eq. (8), the longitudinal and vertical turbulence velocities act as dependent variables. On the r.h.s.

are two statistically independent Weiner processes, W1 and W2 (the Weiner process is related to (unit) Gaussian

white noise by dW ¼ GWN dt). Independence between the two processes is justified physically by the hypothesis of

isotropy of the turbulent field. Note that Eq. (8) can be interpreted either in the It #o or Stratonovich sense since the noise

is additive.

3.2. Aerodynamic model

Restricting the flow to being attached and incompressible, but accounting for unsteady (lag) effects, the

aerodynamics is modelled as

LðtÞ ¼ prb2½ .h þ U ’a
 bah .a	 þ 2prbU w3=4Fð0Þ 

Z t

0

w3=4ðsÞ
dFðt 
 sÞ

ds
ds

� �

þ 2prbUm wTCð0Þ 

Z t

0

wT ðsÞ
dCðt 
 sÞ

ds
ds

� �
; ð9aÞ

MEAðtÞ ¼ prb2½bah
.h 
 b½0:5 
 ah	U ’a
 b2½a2

h þ 1=8	.a	 þ 2prb2½ah þ 0:5	U w3=4Fð0Þ 

Z t

0

w3=4ðsÞ
dFðt 
 sÞ

ds
ds

� �

þ 2prb2½ah þ 0:5	Um wTCð0Þ 

Z t

0

wT ðsÞ
dCðt 
 sÞ

ds
ds

� �
; ð9bÞ

where

w3=4ðtÞ ¼ ’h þ Uaþ b½0:5 
 ah	’a; ð10Þ

U ¼ Um þ uT ðtÞ; ð11Þ

FðtÞ ¼ 1 
 0:165e
0:0455Umt=b 
 0:335e
0:3Umt=b; ð12Þ

CðtÞ ¼ 1 
 0:5792e
0:1393Umt=b 
 0:4208e
1:802Umt=b: ð13Þ

Both the lift force and aerodynamic moment are composed of three types of terms. Terms proportional to

airfoil acceleration are added mass terms, which physically represent the reaction force of the air displaced by the

accelerated motion of the airfoil. The second set of terms, those that are proportional to U ; comprise the circulatory

airloads, which model the effects of the bound vorticity and the shed wake. They account for arbitrary motion of the

airfoil, as defined by the downwash at the three-quarter chord point, w3=4: These terms are influenced by the turbulent

excitation via the airspeed U ¼ Um þ uT ðtÞ; which is composed of a constant mean part, Um; and a time-varying

component, uT ðtÞ; due to the longitudinal turbulence excitation. The unsteady effects are modelled by a two-state

representation of Wagner’s function, FðtÞ; given by Eq. (12) (Fung, 1955). The final type of expression introduced in

Eq. (9) is solely due to the vertical component of turbulence, wT ðtÞ: In this case, the unsteady effects are given by a two-

state representation of K .ussner’s gust-penetrating function, cðtÞ; shown in Eq. (13). Additional details are provided by

Poirel (2001).

The added mass and circulatory airload terms are similar to those given by Fung (1955), except that they

have been modified, based on the work of van der Wall and Leishman (1994) and Dinyavari and Friedmann (1986), to

include a random time-varying airspeed. One necessary simplifying assumption, relevant to both the bound vorticity

and added mass, is chordwise uniformity of the longitudinal turbulence excitation. This can be justified physically in the

limit of low frequency excitation, since the flow velocity gradients along the chord are small for small reduced

frequencies.
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Another notable simplifying assumption in the circulatory terms concerns the airspeed used in Wagner’s

function, which is assumed to be constant and set at the mean airspeed, Um: This assumption effectively

forces the distance travelled by the vortices in the wake to be equal to Umt; thus airspeed fluctuations in the

trailing wake are neglected. In support of this assumption, an heritage from Greenberg’s original theory, Dinyavari

and Friedmann (1986) argue that unsteady airloads are much more sensitive to the velocity of the wake vortices than

their position. Furthermore, van der Wall and Leishman (1994) show that this is justified for a combination of low

frequency and small amplitude airspeed variations. Furthermore, this assumption makes physical sense when it is

realized that in these conditions the distance covered by the shed vortices is determined, in large part, by the mean air-

flow speed.

Due to the Gaussian nature of the excitation the model predicts that very high amplitude turbulent velocities may

occur, resulting in a reversal of the flow over the airfoil. In this case the aerodynamic model breaks down. However, by

virtue of the distribution shape, the very high amplitudes occur with a very low level of probability, such that, in

practice and for the range of turbulence intensities studied in this paper, flow reversal occurs for a very short period of

time and therefore can be effectively neglected. For example, a turbulent intensity Tu ¼ 25% (i.e. s2
T ;nd=1.0 and

Um;nd ¼ 4:0) has a probability of flow reversal PðuT ;ndo
 Um;nd Þ ¼ 0:00003; assuming a frequency interpretation of

probability, this means that flow reversal occurs for only 0.003% of the (flight) time and therefore will not affect

significantly the overall predicted dynamics.

To show more specifically the effect of the longitudinal random excitation, the airspeed used in both the added mass

and circulatory airloads due to arbitrary airfoil motion and the longitudinal turbulence is expanded for the lift force,

shown in Eq. (9a), giving the following:

prb2½ .h þ U ’a
 bah .a	 þ 2prbU w3=4Fð0Þ 

Z t

0

w3=4ðsÞ
dFðt 
 sÞ

ds
ds

� �
¼ prb2½ .h þ ½Um þ uT ðtÞ	’a
 bah .a	

þ 2prb½½Um þ uT ðtÞ	 ’h þ ½U2
m þ 2UmuT ðtÞ þ u2

T ðtÞ	aþ b½0:5 
 ah	½Um þ uT ðtÞ	’a	Fð0Þ


 2prb½Um þ uT ðtÞ	
Z t

0

’h þ ½Um þ uT ðsÞ	aþ b½0:5 
 ah	’a
dFðt 
 sÞ

ds
ds: ð14Þ

Note that the airspeed terms (U ¼ Um þ uT ) are dependent on both the present time, t; and the historical time, s: In

other words, the circulatory lift at time, t; is a function of the instantaneous value of the airspeed and its time history.

Hence, the history of the longitudinal turbulence is represented by the uT ðsÞ term. Examining Eq. (14) shows that the

airfoil is excited by longitudinal turbulence in three different ways: these being the uT ðtÞ; u2
T ðtÞ and uT ðtÞ uT ðsÞ terms.

The two nonlinear noise terms make the problem extremely difficult, if not impossible, to resolve analytically, but are

easily handled numerically.

Eq. (14) is very similar to the one developed by Bucher and Lin (1988a, b) for the stability analysis of bridges in

turbulent flow, with two notable exceptions. One difference is that the instantaneous airspeed, UðtÞ ¼ Um þ uT ðtÞ;
outside the integral in Eq. (14) is taken inside the integral in their analysis. This is done without justification. It can be

attributed to the fact that they did not introduce the airspeed fluctuations at the source of their derivation, but instead

at the end. The formulation of Bucher and Lin is thus theoretically questionable. We have, however, in the course of

this work run a few test cases with their model and found no important numerical differences with ours, which indicates

a certain robustness of the aerodynamic model. The second difference is that, on the basis of low turbulence intensity,

Bucher and Lin neglected all quadratic noise terms, u2
T ; in order to obtain an analytical solution. We have also

investigated numerically this aspect of their work, and found that the influence of u2
T is secondary even at a relatively

high turbulence intensity, i.e. Tu ¼ 25%:

4. Numerical simulation

The aeroelastic equations of motion are formed by combining the structural equations of motion, Eq. (6), with the

aerodynamic lift force and moment expressions, Eq. (9), which gives a set of two integro-differential equations. The

numerical integration of this system can be facilitated by transforming the integral terms into differentials with the

addition of two new second-order differential equations. Each additional second-order equation corresponds to two

augmented states, given by z1; z01, z2 and z02; a consequence of the two-state representation chosen for Wagner’s and

K .ussner’s functions, respectively. Details of this process are given in Poirel (2001); see also Dinyavari and Friedmann

(1986).

The transformation of the aeroelastic equations into pure differential form enables a physical interpretation of the

different terms from the point of view of a traditional mechanical model with inertia, damping and stiffness forces and
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external forcing. The nondimensional aeroelastic equations of motion are given below in differential form.
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where %u ¼ uT=Um ¼ uT ;nd=Um;nd and %w ¼ wT=Um ¼ wT ;nd=Um;nd :
Note that both the damping and stiffness matrices are time-varying or parametrically excited. This is due to the

longitudinal turbulence excitation, which enters the problem by means of the aerodynamic loads. Longitudinal

turbulence acts as a linear coloured random excitation on the damping terms via the normalized turbulent velocity %u:
The excitation on the stiffness terms is both linear and quadratic, via %u and %u2; respectively. On the other hand, the mass

matrix is time-invariant. The vertical component of turbulence acts as an external forcing function.

Solution of Eq. (15) is achieved by expressing it in state space form and solving it in the time domain using a standard

fourth-order Runge-Kutta numerical integration scheme. Simultaneously, the turbulent velocity equations of motion,

Eq. (8), which act as input to the aeroelastic equations, are also solved. In turn, the input to the turbulent velocity

equations is a set of random numbers which are generated at each time step of the simulation. Accordingly, four

statistically independent uniform deviates are produced using the routine RAN1 found in Press et al. (1996). The four

uniform deviates are then transformed into two Gaussian distributed numbers using the Box-Muller algorithm (Knuth,

1998). This algorithm is the heart of a number of Monte Carlo simulations in the physics literature (Sancho et al., 1982;

Fox et al., 1988; Fox, 1989). The simulation is run until steady state, in the statistical sense, is reached. The process is

assumed to be ergodic, thus, providing an equivalency between ensemble and time averages. In this regard, all the

dynamic information is contained in one sample response.

Because the Runge-Kutta method is an explicit integration scheme, the main requirement governing the time step is

numerical stability. The time step of the integration is thus chosen as the minimum of either 1/50th of the

nondimensional scale of turbulence, or noise correlation time, or 1/128th of the two uncoupled natural periods of the

system.

The solution of the simulation is validated via a number of different criteria. First, it is confirmed that the solution is

independent of the sample sequence of uniform random numbers. This is done by changing both the seed and the

random number generator algorithm. Second, the variance, Gaussian distribution and PSD of the numerical solution of

the turbulent velocities are checked against their pre-defined values. Third, the numerical solution of the aeroelastic

system excited with pure vertical turbulence is compared with a closed-form frequency domain solution. Fourth, we

check the convergence of the solution in terms of the time step. Numerical stability and accuracy of the response are

verified. Finally, the Runge-Kutta solution of the aeroelastic system excited with both turbulent excitations, and then

with pure longitudinal turbulence, is compared with Houbolt’s method which is an implicit scheme. Except for the short

transient phase, the two methods give indistinguishable results.
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With regard to the numerical calculation of the largest Lyapunov exponent, we have tested its invariance with respect

to initial conditions and sample noise realisations. All test runs resulted in the same (nonrandom) value, as expected

from its theoretical foundations.

5. Results and discussion

As introduced earlier, the stability of the linear airfoil, strictly speaking the fixed point, is only affected by the

longitudinal component of the turbulent excitation. The vertical component, which acts as an external forcing function,

does not contribute to the loss of stability, but instead it affects the response level of the airfoil. This is a general

property of linear dynamical systems and can be deduced from the definition of the Lyapunov exponent. Accordingly,

unless otherwise specified, all results discussed in this paper have been obtained with pure longitudinal turbulent

excitation.

5.1. Deterministic baseline

Throughout this paper, unless otherwise stated, results are given for the following set of nondimensional airfoil

parameters: %o ¼ 0:6325; xy ¼ 0:25; ry ¼ 0:5; m ¼ 100:0; ah ¼ 
0:5: Under these conditions (deterministic) flutter occurs

at Uf ;nd ¼ 4:31 via mode 1. Mode 1 is defined as the mode with the lowest frequency, while mode 2 has the higher

frequency. The loss of stability is exemplified in Fig. 3, which presents the behaviour of the two complex conjugate pairs

of eigenvalues as a function of airspeed. The eigenvalues have been calculated using a standard eigenvalue analysis

package. The flutter speed is given precisely at the airspeed where the real part of one of the eigenvalues changes sign, as

shown in Fig. 3(a) by mode 1. Fig. 3(b) illustrates the coalescence of the two eigenfrequencies, whose values are given by

the imaginary part of the eigenvalues. The flutter frequency is kf ¼ 0:182:

5.2. Influence of airfoil and Dryden turbulence parameters

As stated earlier, the random flutter point is determined according to a change in sign of the largest Lyapunov

exponent. More precisely, lmax is calculated numerically at different mean airspeeds until it changes from being negative

(stable) to positive (unstable). For these calculations, the mean airspeed, Um;nd , is swept with increments of 0.05. The

random flutter speed, i.e. the mean airspeed at which lmax is zero, is then interpolated between the pre- and post-flutter

mean airspeeds (this is exemplified in Fig. 13).

According to this methodology, the accuracy of the flutter speed is determined by two factors: the error in the

calculated largest Lyapunov exponent, and the subsequent interpolation. The error on lmax is minimized by running the

simulation until convergence is obtained within a tolerance of70.00005, or71% to 10% of typical values of lmax

considered. When this error is combined with the interpolation process, the accuracy of the random flutter speed is

estimated to be within70.005, or70.1% of a typical flutter speed, for example Um;nd ¼ 5:070:005:

ARTICLE IN PRESS

Fig. 3. Behaviour of the nonexcited (deterministic) airfoil eigenvalues as a function of airspeed; (a) real part (damping); (b) imaginary

part (frequency).
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We have found that the flutter speed is systematically lowered by random turbulence, specifically its longitudinal

component, for all airfoil and Dryden model parameters tested. The influence of the airfoil parameters is reported first.

This is followed by a discussion of the effects of the turbulence parameters, namely variance and scale.

5.2.1. Sensitivity to frequency ratio, %o; static unbalance, xy; and elastic axis location, ah

Fig. 4 shows the flutter speed as a function of either the frequency ratio, static unbalance or location of the elastic

axis. It is observed that the flutter speed is systematically decreased by the presence of turbulence. Also of particular

interest is that this reduction of the flutter speed occurs regardless of whether the heave or pitch DOF is stiffer; this is

illustrated by the frequency ratio which is varied from smaller to larger than one. In turn this ratio, has an effect on

which mode becomes unstable. For the baseline airfoil ð %o ¼ 0:6325Þ mode 1 is the unstable mode, whereas at %o ¼ 1:4;
for example, the airfoil loses stability via mode 2, which has the higher frequency.

5.2.2. Sensitivity to turbulence variance, s2
T ;nd

The effect of turbulence level is demonstrated in Fig. 5, where the random flutter speed is plotted as a function of

turbulence variance for four different scales of turbulence. The scale of turbulence ranges from a small scale at

Lnd ¼ 0:5; which effectively models white noise,1 to a large scale at Lnd ¼ 50:0: For all scales, the relationship between

random flutter speed and turbulence variance is nearly linear. Note, as well, that the flutter speed decreases as the

turbulence variance is increased.

Investigating the flutter airspeed–turbulence variance relationship further, we have found that for coloured noise the

reduction in flutter speed is generally proportional to the area under the turbulence power spectral density, jLT ;nd ðkÞ; up

to the deterministic (nonexcited) flutter frequency. This is illustrated in the following. Given that the turbulence
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Fig. 4. Comparison of deterministic and random flutter boundaries for different combinations of airfoil parameters; Lnd ¼ 50:0;
s2

T ;nd=0.5; (a) xy ¼ 0:25; ah ¼ 
0:5; (b) %o ¼ 0:6325; ah ¼ 
0:5; (c) xy=0.25, %o ¼ 0:6325:

1 It can be shown that the noise correlation time of the excitation, in nondimensional form, is equal to the scale of turbulence.

Assuming that the flutter frequency, more precisely its inverse, is a representative time scale of the aeroelastic system, it is seen that

1=kf btcor for Lnd ¼ 0:5 (i.e. 1/0.182=5.5b0.5). In other words, at this small value of scale of turbulence, the excitation spectrum is

nearly flat for the range of frequencies to which the system potentially responds.
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variance, s2
T ;nd ; is equal to the total area under the turbulence PSD, we define an effective variance, which in our case

represents, loosely speaking, how much of the turbulence excitation participates in the reduction of the flutter speed.

This is given by

s2
eff ;nd ðkÞ ¼

Z k

0

fT ;nd ðkÞ dk: ð16Þ

For example, take a random flutter speed, Um;nd ¼ 3:85: From Fig. 5 it is deduced that the three sets of coloured

turbulence parameters which correspond to that flutter speed are:

s2
T ;nd ¼ 0:67; Lnd ¼ 50:0;

s2
T ;nd ¼ 1:0; Lnd ¼ 10:0;

s2
Tnd ¼ 1:43; Lnd ¼ 5:0:

The corresponding PSDs are plotted in Fig. 6, and the areas under each curve up to kf ¼ 0:18 are approximately the

same and equal to s2
eff ;nd ¼ 0:65:

One immediate conclusion from this analysis is that the random flutter speed is essentially determined by the low

frequency content of the excitation. This is generally the case for coloured excitation. However, for the smaller scale of

turbulence, Lnd ¼ 0:5; which acts effectively as ‘‘physical’’ white noise excitation, the same effective variance as for the

larger scales is reached at a much higher frequency; thus, hinting to a sensitivity of the airfoil to a broader range of

frequencies past the flutter frequency. A more detailed analysis of the effect of specific excitation frequencies is provided

in Section 5.3.

5.2.3. Sensitivity to scale of turbulence, Lnd

Fig. 5 can be transformed to show more clearly the effect of scale of turbulence. In this regard, Fig. 7 indicates an

asymptotic behaviour of the decrease in flutter speed as the scale of turbulence is increased past Lnd ¼ 50:0: At this

value of scale of turbulence, 95% of the turbulence power is located at frequencies lower than k ¼ 0:18: Again, the

deterministic flutter frequency appears to act as a useful reference frequency in terms of defining the region for low and

very low frequencies that affect the stability.

A possible physical explanation of the enhanced sensitivity of the airfoil to low frequency parametric excitation is as

follows. For large values of scale of turbulence, for which most of the excitation power is located in the low frequency

range, and which are equivalent to large noise correlation times in comparison with the system time scales, the system

has sufficient time to react and respond to the excitation. In other words, the excitation is temporarily frozen in time for

the airfoil. Conversely, for small values of scale of turbulence the white noise idealization is approached. In this case, the

noise varies so quickly that the system has no time to adjust, hence the airfoil is less affected by the turbulence.
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Fig. 5. Random flutter airspeed as a function of turbulence variance and for four scales of turbulence.
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5.3. Parametric resonance study

In the analysis of the previous section, the influence of the turbulent excitation was interpreted and described via an

effective variance. This approach does not consider per se the excitation spectral density at specific critical frequencies;

instead the excitation is viewed as a continuous low frequency band turbulence. Thus, this approach does not allow for

a targeted analysis of the system sensitivity to a particular frequency band. A more profound understanding can be

obtained by investigating the sensitivity of the stability to a narrow band parametric excitation. This is the subject of

this section. In order to excite specific frequencies we have replaced the Dryden turbulence spectrum with the following

narrow band model for the longitudinal excitation. The analytical expression for its PSD is given by the following

equation: D controls the intensity (for a given z and r), z defines the width of the excitation band (for a given r), and the

peak frequency is denoted by r:

fLT ;nd ðkÞ ¼
D

ðr2 
 k2Þ2 þ ð2zrkÞ2
; ð17Þ
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Fig. 7. Random flutter airspeeds as a function of scale of turbulence and for five values of turbulence variance.

Fig. 6. Closed-form solutions of the nondimensional Dryden longitudinal turbulence velocity PSDs for different scales and variances,

corresponding to the same random flutter speed, Um;nd ¼ 3:85:
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where (Newland, 1975):

D ¼
2zr3

p
s2

T ;nd ð18Þ

Eq. (17) is represented graphically in Fig. 8. The time domain representation is given by

du0T ;nd þ 2zru0
T ;nd dtþ r2uT ;nd dt ¼ sT ;nd

2zr3

p

� �1=2

dW : ð19Þ

The stability of the airfoil as a function of this narrow band excitation is examined by sweeping the excitation peak

frequency, r; from 0.01 to 0.60. The results are shown in Fig. 9 in the form of a stability boundary plot. In this process,

the peak frequency is incremented nonuniformly; the increment, Dr; depends on the degree of resolution required for the

stability boundary. Both the variance and bandwidth of the excitation are fixed for all peak frequencies. The variance is

set at s2
T ;nd=1.0, and the bandwidth, defined at the half-power point as Dk ¼ 2zr; is kept constant at Dk ¼ 0:005 by

adjusting the value of the parameter z accordingly.

Before discussing the results shown in Fig. 9 it is relevant to point out that we are looking for parametric resonances.

These resonances should appear as a dip in the stability boundary indicating a decrease of the flutter speed. Based on

the deterministic flutter frequencies (kf � k1 � 0:182; k2 ¼ 0:221), we are therefore searching primarily for the following

potential principal and secondary resonances. Note, a general observation is that principal resonances are more likely to

occur than secondary resonances, and so on (Ibrahim, 1985; Cartmell, 1990; Lin, 1996).
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Fig. 8. Closed-form solution of the narrow band excitation PSD; z ¼ 0:0125; r ¼ 0:2; s2
T ;nd=1.0.

Fig. 9. Flutter boundary of the parametrically excited airfoil as a function of narrow band excitation peak frequency; s2
T ;nd=1.0,

Dk ¼ 2zr ¼ 0:005:
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Principal parametric resonances, (ki7kj)/m where i; j ¼ 1; 2 and m ¼ 1:

r ¼ 2k1-0:36

r ¼ 2k2-0:44;

r ¼ k2 þ k10:40 ðcombination addition typeÞ;

r ¼ k2 
 k1-0:04 ðcombination difference typeÞ:

Secondary parametric resonances, ðki7kjÞ=m where i; j ¼ 1; 2 and m ¼ 2:

r ¼ k1-0:18;

r ¼ k2-0:22;

r ¼ ðk2 þ k1Þ=2-0:20 ðcombination addition typeÞ;

r ¼ ðk2 
 k1Þ=2-0:02 ðcombination difference typeÞ:

In light of these potential resonance conditions we now examine Fig. 9. Note that the solid line separates the stable

region (below the curve) from the unstable airspeeds above it. In reference to the deterministic flutter speed, Uf ;nd ¼
4:31; we denote six resonances. They are discussed as follows.

5.3.1. Principal parametric resonance, 2k1

The largest reduction in flutter speed occurs at rE0:42: This excitation frequency appears to correspond to

approximately twice the frequency of the second mode, 2k2E0:44: However, this value of k2 is taken at the deterministic

flutter speed, Uf ;nd ¼ 4:31: At the random flutter speed, Um;nd ¼ 3:1; its value has changed to k2E0:36; while k1E0:21:
Accordingly, this resonance is more likely due to twice the frequency of the first mode, 2k1E0:42:

This excitation at 2k1 meets the condition of principal parametric resonance with the natural frequency of the flutter

mode. In this light, we conclude that this resonance is the main cause of the sensitivity of the system to high excitation

frequencies as observed with the Dryden model. It explains why the system is effectively excited by ‘‘physical’’ white

noise, Lnd ¼ 0:5; as discussed earlier. For larger values of scale of turbulence, this condition of principal parametric

resonance still exists, but is much less dominant since the PSD of the Dryden model excitation at this frequency

(kE0:42) is relatively small compared with the low frequency excitation spectral density.

5.3.2. Principal parametric resonance, combination addition type, (k1+k2)/1

For frequencies slightly greater than r ¼ 0:42 another resonance appears to be centred around rE0:47: At this

particular flutter speed (Um;nd ¼ 3:8), the possible principal resonances are: r ¼ 2k2 ¼ 2E0:275 ¼ 0:55 and r ¼
k2 þ k1 ¼ 0:275 þ 0:187 ¼ 0:462: Consequently, the loss of stability in this region is more likely due to the principal

parametric combination (addition type) resonance.

It is possible that the other principal resonance condition at 2k2 also affects the stability, but we believe its effect is so

small compared to the other principal resonances at 2k1 and k2 þ k1 that it is hidden within that large instability region

centred around rE0:42:

5.3.3. Principal parametric resonance, combination difference type, (k2
k1)/1

At r ¼ 0:09 another strong resonance occurs. This is also a condition of principal parametric excitation, but since it is

close to the condition ðk2 
 k1Þ=1 it corresponds to a combination difference type. As for the resonance at r ¼ 0:42;
when interpreting this result as being related to the difference of the two eigenfrequencies it should be realized that their

values are more likely to be determined by the random flutter speed than the deterministic one. At Um;nd ¼ 3:35; the

difference between the deterministic eigenfrequencies is: k2 
 k1 ¼ 0:32520:20 ¼ 0:125 compared with 0.04 at Uf ;nd ¼
4:31:

5.3.4. Secondary parametric resonances, 2k1/2 and 2k2/2

Turning our attention to the secondary parametric excitation frequencies, we note a small region of destabilization

centred at r ¼ 0:18; and to its right a hint of resonance at r ¼ 0:22: These conditions correspond to two secondary

(noncombination) parametric resonances. It is not surprising that their strengths are smaller than the principal

parametric resonance discussed earlier. Support for this hypothesis comes from Ibrahim (1985) who discusses the

problem of a single-degree-of-freedom system in conditions of random parametric excitation, where the loss of stability
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for the principal parametric resonance (excitation frequency is twice the system natural frequency) is much more

important than for the secondary parametric condition. In our case, and comparing these two secondary resonances, we

also point out that the strongest of the two appears at k1; which is the flutter frequency.

5.3.5. Secondary parametric resonance, combination difference type, (k2
k1)/2

The last region where a decrease in stability is observed is relatively broad and covers the range of very small

frequencies. Its existence can be explained by two mechanisms. First, there exists a condition of secondary combination

difference resonance, which based on the random flutter speed, Um;nd ¼ 3:6; gives ðk2 
 k1Þ=2ð0:2920:19Þ=2 ¼ 0:05: The

second mechanism is related to the value of the PSD at zero frequency. It has been shown analytically that this

condition is a determinant in the stability of a single-degree-of-freedom system (Lin, 1996; Ariaratnam and Tam, 1979).

However, it was also shown that the loss of stability at this condition originated from the random damping term, i.e.

when the random excitation acts on the damping. In our case, however, we will argue in Section 5.4 that the damping

terms have a secondary effect on the random flutter mechanism. Consequently, the first cause is probably the most

important.

In summary, we have observed two broad regions of particular sensitivity, or strong resonances, to narrow band

excitation. One, located in either the very low or low frequency range, is determined by the secondary and principal

combination, difference type, parametric resonances, ðk2 
 k1Þ=2 and ðk2 
 k1Þ=1; respectively. The other region is

centred around the principal parametric resonance, 2k1; with contributions from the principal combination, addition

type, parametric resonance ðk2 þ k1Þ=1; and the other principal parametric resonance at 2k2:
These resonances have a particular significance for coalescence flutter. The inherent nature of coalescence flutter is to

have two closely spaced frequencies, i.e. k2Ek1 (where k1 � kf ). One important consequence of the coalescence is that

the two combination, difference type, parametric resonances, ðk2 
 k1Þ=2 and ðk2 
 k1Þ=1; are located close to each

other, and also close to zero. This explains the significant decrease in flutter speed when the airfoil is parametrically

excited with the low band Dryden turbulence, since most of the excitation power is located in the very low frequencies.

Another consequence of having two closely spaced frequencies is that the principal parametric resonances at 2k1; 2k2;
and k2 þ k1; are also in close proximity to each other. These conditions combine to form a large region of

destabilization for ‘‘physical’’ white noise excitation, i.e. for small values of scale of turbulence.

In contrast, for the case of single-degree-of-freedom flutter reported by Lin and Li (1993); Li and Lin (1995); Lin

(1996), and discussed in Section 2 of this paper, there is no frequency coalescence. For this single-degree-of-freedom

instability there is one main condition of principal parametric resonance at 2kf ; and possibly at 2k2 and combination

resonances if coupling is introduced with another degree-of-freedom. However, since there is no coalescence, the

aeroelastic frequencies are, in general, well separated and the region(s) of parametric resonance is(are) therefore narrow

and not necessarily close to the zero frequency axis. In comparison with the problem investigated in this paper, results

from Lin and Li for a two-degree-of-freedom analysis of single-degree-of-freedom, negative-damping, flutter indicate a

narrow unstable region centred at 2k1; none at 2k2; and a relatively smaller unstable region at k1 
 k2: Their results also

suggest a light sensitivity of the system to principal parametric combination (addition type) resonance, k2 þ k1:

5.4. Aspects of frequency coalescence

5.4.1. General considerations

The findings reported in this section build on, and clarify, some of the results communicated in a previous paper

(Poirel and Price, 2001), where for airspeeds approaching the flutter condition we discussed difficulties in interpreting

the frequency content of the linear airfoil response to combined turbulence. These difficulties were attributed to the very

low damping of the slow mode, and, hence, extreme sensitivity to perturbations. In this paper, we have refined our

analysis, and show that the phenomenon of frequency coalescence, a fundamental element of the deterministic flutter

instability, plays a role in the decrease of the random flutter speed. More particularly it is observed that longitudinal

excitation modifies the system modal characteristics, and, in turn, the frequency coalescence.

In order to study the influence of the longitudinal turbulent excitation on the frequency coalescence, the simulation is

run at pre-flutter airspeeds, and the (stationary) spectral response of the airfoil to vertical turbulence is examined. A

visual interpretation of the two aeroelastic modal frequencies can then be obtained relatively easily. For this analysis the

use of the vertical turbulent excitation is required not to investigate its effect on the airfoil response, but as a means of

exciting the system and probing its dynamics. In this respect it should be remembered that the (stable) linear airfoil

cannot have sustained behaviour unless it is excited by an external forcing.

Fig. 10 shows a comparison of the closed-form solution obtained directly in the frequency domain with the spectral

representation of the numerical time domain solution for the airfoil excited by pure vertical turbulence. The scale of

turbulence is Lnd ¼ 0:5; which effectively models ‘‘physical’’ white noise. The closed-form and numerical solution PSDs
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are nearly indistinguishable, except for local variations in the numerical based spectrum; the minor differences are

attributed to the discretization process of the Fourier transform and can be diminished by taking more averages. Note

that the PSD shown for the numerical solution represents an average of 59 fast Fourier transforms (FFT) for sequential

time samples, each composed of 65,536 (i.e. NFFT ¼ 216) data points; this represents approximately 4 million data

points used to estimate the spectral response. The almost perfect match between the overall contour of the numerical

based PSD and the closed-form solution validates the numerical solution from the points of view of both the numerical

integration and the calculation of the FFT. Furthermore, the peak in the numerical based spectrum is located at

k ¼ 0:184; the frequency resolution is Dk ¼ 0:00096 (i.e:Dk¼ 2p=ðNFFTDT) where NFFT ¼ 216 and the integration time

step DT ¼ 0:1). In comparison, the eigenfrequency obtained with a standard eigenvalue analysis is k ¼ 0:1839; see Fig.

3(b) for mode 1. These are essentially identical.

In Fig. 11, the same closed-form solution is compared with the numerical based PSD for the airfoil excited with both

vertical and longitudinal turbulence. In comparison with the case for pure vertical excitation, we observe a clear

narrowing of the dominant mode accompanied by an increase in frequency at which the maximum response occurs.

This dominant mode represents the slow linear mode (mode 1).
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Fig. 11. PSD plot of the airfoil pitch response to combined excitation turbulence (numerical solution, ) and pure vertical turbulence

(closed-form solution, —) at Um;nd ¼ 4:0; s2
T ;nd=1.0, Lnd ¼ 0:5:

Fig. 10. Comparison of numerical ( ) and closed-form (—) solution PSDs of the pitch response to pure vertical turbulence;

s2
T ;nd=1.0, Lnd ¼ 0:5, Und ¼ 4:0:
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Due to the longitudinal turbulence, mode 1 is shifted from k1 ¼ 0:184 to k1 ¼ 0:188; hence towards the second mode.

Although not evident from Fig. 11, since at this airspeed the PSD is dominated by the mode losing stability (mode 1),

mode 2 is also shifted by the longitudinal turbulence but in this case to a lower frequency. At lower airspeeds, where

mode 2 is more clearly defined, the shift is more easily seen. For example, at Um;nd ¼ 3:5 mode 2 is shifted from

k2 ¼ 0:308 to k2 ¼ 0:299 by the longitudinal turbulence. Furthermore, changing the frequency ratio such that heave is

stiffer than pitch does not change this behaviour. For example, as opposed to the baseline airfoil ð %o ¼ 0:6325Þ which

loses stability via mode 1, the mode losing stability for the airfoil with %o ¼ 1:4 is the second mode. In this case mode 2 is

also shifted toward smaller frequencies, hence toward coalescence.

As noted above, we have observed that longitudinal turbulence causes a systematic shift of both modes towards each

other. We conclude by arguing that the observed increase of the first modal frequency combined with a decrease of the

second modal frequency is an indication that longitudinal turbulence advances the frequency coalescence. We can also

interpret this observation in the sense that longitudinal turbulence increases the coupling between the pitch and heave

motion.

The PSD of the linear response to combined turbulence excitation contains not only information on the system

natural frequencies, but also on its modal damping. Hence, from the narrowing of the peak, it is concluded that the

modal damping for mode 1 is decreased by the presence of longitudinal turbulence. This is coherent with the

observation that the flutter speed is lowered, since a reduction in damping is characteristic of approaching the instability

point. Also shown is the width of the dominant mode at the half-power point, Dk1=2PSD; taking half of this parameter

(i.e. Dk1=2PSD=2) and interpreting it as the real part of the eigenvalue for mode 1 (with longitudinal excitation), we have:


z1k1 ¼ 
Dk1=2PSD=2 ¼ 
0:009=2 ¼ 
0:0045:

This value is compared with the largest Lyapunov exponent at the same speed, lmax ðUm;nd ¼ 4:0Þ ¼ 
0:0047; see Fig.

12. This comparison provides a physical understanding of the concept of the largest Lyapunov exponent in the context

of longitudinal excitation. Note that both a standard eigenvalue analysis, see Fig. 3(a), and the numerically calculated

largest Lyapunov exponent, as shown in Fig. 12, indicate that the real part of the equivalent deterministic eigenvalue is

l1 ¼ 
0:0055; thus indicating more damping for the nonexcited airfoil.

5.4.2. Sensitivity to random stiffness and damping terms

The frequency coalescence question can also be elucidated by examining the sensitivity of the decrease of the flutter

speed to the random stiffness terms, and in corollary to the random damping terms. Due to the inherent stiffness-

controlled nature of the frequency coalescence phenomenon associated with classical binary flutter, it is shown that the

random stiffness terms are essential contributing factors, whereas the random terms in the damping matrix do not

significantly influence the flutter point.

Fig. 13 illustrates the relative importance of random stiffness and random damping terms via the behaviour of the

largest Lyapunov exponent. Four cases are shown based on the following airfoil parameters %o ¼ 0:6325; xy ¼ 0:25;
ry ¼ 0:5; m ¼ 100:0; ah ¼ 
0:2: The deterministic, nonexcited, airfoil has a flutter speed of Uf ;nd ¼ 3:59: The excited

airfoil, with turbulence variance s2
T ;nd=0.5 and scale Lnd ¼ 50:0; flutters at Um;nd ¼ 3:07: In between these two extremes

are two situations, in one case the random terms in the damping matrix of Eq. (15) are artificially neutralized, and in the
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Fig. 12. Time (iteration) evolution of the largest Lyapunov exponent of the nonexcited airfoil and in combined excitation turbulence at

Um;nd ¼ 4:0; s2
T ;nd=1.0, Lnd ¼ 0:5:
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other case the random terms in the stiffness matrix are set to zero. It is clear that the random terms in the aeroelastic

system stiffness matrix have much more impact on the decrease of stability, and associated lowering of the flutter speed,

than the random damping terms. We conclude by arguing that this observation confirms the nature of the shift in flutter

speed to be stiffness controlled, as is the case for the deterministic part. It is also an indirect indication that the

coalescence of the two frequencies involved in flutter is modified by longitudinal turbulence.

6. Conclusion

We have found that the flutter speed of a two-degree-of-freedom airfoil is systematically decreased by random

turbulence, specifically its longitudinal component, for all airfoil and Dryden turbulence model parameters tested. This

has been shown to be the case for different combinations of frequency ratio, static unbalance or location of the elastic

axis, as well as for a large range of variance and scale of turbulence.

The relationship between random flutter speed and turbulence level (as defined by its variance) is nearly linear.

Furthermore, for a realistic turbulence spectrum, i.e. away from the white noise idealization, the decrease in flutter

speed is approximately proportional to the area under the longitudinal excitation PSD curve up to the flutter frequency.

It has been shown that the value of the parametric excitation PSD at frequencies corresponding to the principal,

k2 
 k1; and secondary, ðk2 
 k1Þ=2; combination difference type parametric resonances are critical factors for the

decrease in stability. This has particular significance for the coalescence flutter mechanism where the excitation

originates from turbulence, since these two specific elements (difference combination resonance of two close frequencies

and large excitation for small frequencies) combine to essentially determine the magnitude of the decrease. For the

‘‘physical’’ white noise spectrum, the two parametric resonance conditions at 2k1 and k2 þ k1 also become important.

The system modal characteristics (eigenvalues) are modified by longitudinal turbulence, which acts as a parametric

excitation. In particular, we have observed a systematic shift of both eigenfrequencies towards each other, such that

frequency coalescence occurs at a lower airspeed. Associated with a change in modal frequencies is a decrease in

damping of the slow mode due to longitudinal turbulence, as indicated by both the largest Lyapunov exponent and the

width of the dominant mode at the half-power point as obtained from the response PSD.

The degree of stability of the turbulent excited airfoil, as well as the random flutter speed itself, is dictated in a large

part by the random stiffness terms, whereas the random damping terms have a secondary influence. The nature of the

shift of the flutter point is, thus, essentially stiffness related. This is interpreted as another indication that the stiffness-

controlled frequency coalescence is modified by longitudinal turbulence.
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